Guest Editorial

Equipment and Operations Automation in the Semiconductor Industry

The semiconductor industry is a key element of all modern economies, contributing either directly via manufacturing of computer chips or indirectly through manufacturing of high-tech goods and the support of services. However, this value comes at a cost. Semiconductor wafer fabrication is arguably the most complex of all manufacturing processes and a state-of-the-art wafer fabrication facility can cost on the order of US $5 billion. Such facilities are highly automated and there is a need to extend the concept of automation to encompass advanced decision technologies (such as Operations Research, Artificial Intelligence, and Queueing Theory)—full automation requires the careful consideration of all decisions in such facilities. While numerous efforts have been made over the years to address issues such as production control and more recently supply chain management, there are compelling opportunities in the area of equipment automation.

As stated in [1], “the drivers of the next-generation factories...[depend] most strongly...on production equipment configurations and the supporting automation system capabilities.” This is in part due to the anticipated transition from 300 to 450 mm diameter wafers, which presents an opportunity to reconsider existing equipment designs and operations. In addition, the careful scientific consideration of the decisions made inside the automated equipment is a relatively new area with much potential and remaining work. Further, there continues to be a wealth of opportunities to improve existing operations. Informed by an ocean of data being collected from the automation systems, new concepts for automated metrology and modeling are also arising. As such, equipment and operations automation promises to lead the revolution toward the next-generation factories; it is the theme of this Special Section of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING.

From over 30 high-quality papers submitted to the Special Section on Equipment and Operations Automation in the Semiconductor Industry, ten papers by leading researchers and practitioners were selected for publication. They are original, visionary, and practically relevant papers that we hope will be of considerable value to and guide the focus of the academic and practitioner communities in the future. There are three foci, all with a specific emphasis on semiconductor manufacturing automation: equipment automation, operations automation, and modeling.

Cluster tools are increasingly common in semiconductor wafer fabrication and consist of a collection of process modules housed in a single chassis. Wafers are moved from one process module to another via wafer transport robots. The linked photolithography scanner—by far the most expensive tool in a fab—may be considered as a connection of cluster tools, or a multicluster tool. The key facet of equipment automation considered for this Special Section is how wafers are moved from process to process within such tools. These decisions dictate the throughput of the tool and are essential for efficient operation. Throughput optimization is a burgeoning field with the potential to change the way equipment is operated; it is especially important as the cost of wafer production equipment and wafer fabricators continues to escalate. In particular, questions on the efficacy of emerging design concepts must be addressed. Chan et al. develop optimal schedules for multicluster tools consisting of two clusters. In a second work, Chan et al. extend their results to multicluster tools with tree-like topologies. Such configurations have the potential to be of increasing importance in manufacturing. In an effort to deduce the throughput implications of internal wafer buffers, Geismar et al. study dual-gripper cluster tools. They also assess the practical value of internal buffers based on work with a U.S. equipment manufacturer. In the fourth paper focusing on equipment automation, Wu et al. employ Petri net methods to address the challenging problem of scheduling cluster tools with reentrant process flows.

The automation of semiconductor manufacturing operations is ever more important as the industry evolves toward greater productivity and new fabricator designs. To wit, the International Semiconductor Manufacturing Initiative’s (ISMI) Next-Generation Factory (NGF) program targets a “30% cost reduction and 50% cycle time improvement by 2012” [3]. To address what is arguably the most important metric in semiconductor wafer fabrication, Blue and Chen propose a new method to automatically identify systematic spatial variations on wafers in an effort to improve yield. Such new methods have the potential to remake the approaches used in the industry. From the industry perspective, Said et al. discuss automated methods for the detection and classification of solder joints in processor sockets on motherboards. This contribution represents real industry implementation of automation methods and science that significantly improves existing capabilities.

While modeling of semiconductor operations is a traditional field, it remains of vital importance. The papers selected provide new directions and insights in this area. Morrison develops theory for multiclass flow lines and demonstrates how they may be used to model linked photolithography scanners. The in-
tent is to provide substantially more expressive yet computationally tractable models for use in fabricator simulation. Wu et al. develop a new approximation for the mean cycle time in batch tools; such tools are common in semiconductor fabricators. The approach corrects for errors made by common decomposition techniques and promises to improve batch tool queueing models. Neural network models for cycle time in a fabricator are developed by Kuo et al. Their approach addresses issues associated with queueing models and has been implemented at an integrated device manufacturer in Taiwan. The last paper of the Special Section is a short paper by Leachman and Ding. They develop a model relating cycle time and excursion yield loss.

We wish to extend our gratitude to all of the authors and anonymous reviewers for their excellent efforts to ensure the quality of the Special Section papers. We also wish to thank Editor-in-Chief N. Viswanadham, Editor-in-Charge of this Special Section M. Zhou, Editorial Assistant A. Chakravarty, and the additional Associate Editors for their extraordinary efforts to support this Special Section. This Special Section was developed by the IEEE Robotics and Automation Society’s Technical Committee on Semiconductor Manufacturing Automation. Please visit our website at http://xS3D.kaist.edu/tc-sma or send an e-mail to james.morrison@kaist.edu for additional information on the Technical Committee.

REFERENCES

James R. Morrison (S’97–M’00) received two B.S. degrees, one in electrical engineering and one in mathematics, from the University of Maryland, College Park, and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Illinois at Urbana–Champaign, Urbana, in 1997 and 2000, respectively.

He was with the Fab Operations Engineering Department at the IBM Corporation from 2000 to 2005. He is currently an Assistant Professor with the Department of Industrial and Systems Engineering at Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea. His research interests include semiconductor wafer fabrication and related automation, service systems, eco-design and port systems.

Dr. Morrison began a three year term as a Co-Chair of the IEEE Robotics and Automation Society’s Technical Committee on Semiconductor Manufacturing Automation in 2009. He has served on the program committee of numerous conferences including IEEE CASE 2010, SEMI/IEEE ASMC 2010 and IEEE CASE 2009. He has served as a Guest Editor for the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. He was selected as the 2009 Best Teacher for the KAIST Department of Industrial and Systems Engineering. In 2010, he was a recipient of the three year New Professor grant from the Korea Research Foundation (KRF).
Chen-Fu Chien (M’03) received the M.S. and Ph.D. degrees in industrial engineering from the University of Wisconsin-Madison in 1994 and 1996, respectively. He also received the Executive Training of PCMPCL from Harvard Business School, Boston, MA, in 2007.

He is a Distinguished Professor of Industrial Engineering and Engineering Management with the National Tsing Hua University (NTHU), Hsin-Chu, Taiwan. From 2005 to 2008, he had been on-leave to serve as the Deputy Director of Industrial Division at the Taiwan Semiconductor Manufacturing Company. He also serves on the Steering Committee for the IE Division of the National Science Council, Deputy Dean of R&D at NTHU, and Board Member for the Chinese Institute of Industrial Engineers (CIIE), Taiwan. He was a Fulbright Scholar at UC-Berkeley, from 2002 to 2003. He had also been a Visiting Professor at the Cambridge University (sponsored by Royal Society), the Beijing Tsinghua University (sponsored by Chinese Development Foundation), and the Waseda University (sponsored by Japan Interchange Association). His research mainly concerns the development of better modeling and analytical methods and solutions for high-tech companies confronted with decision problems involved in operations, technology, and manufacturing strategies that are characterized by uncertain, incomplete, or massive information and a need for tradeoff among various objectives and justification for the decisions. He has received five invention patents on semiconductor manufacturing methodologies. He has published more than 70 journal papers. He also serves as Area Editor for the Flexible Services and Manufacturing Journal, Associate Editor for the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, and serves on the Advisory Board for OR Spectrum.

Dr. Chien received the Outstanding Research Award and Tier 1 Principal Investigator Award from the National Science Council, the Distinguished University-Industry Collaborative Research Award from the Ministry of Education, the University Industrial Contribution Award from the Ministry of Economic Affairs, the Distinguished Young Faculty Research Award and Distinguished University-Industry Collaborative Research Award from NTHU, the Best Paper Award and the Distinguished Young Industrial Engineer Award from CIIE, the Best Engineering Paper Award from the Chinese Institute of Engineers, and the TSMC Faculty Semiconductor Research Grant Award, Taiwan.

Stéphane Dauzère-Pérès received the Ph.D. degree from the Paul Sabatier University, Toulouse, France, in 1992 and the Habilitation à Diriger des Recherches from the Pierre and Marie Curie University, Paris, France, in 1998.

He is a Professor at the Provence Microelectronics Centre, Ecole des Mines de Saint-Etienne, Gardanne, France, where he heads the Department of Manufacturing Sciences and Logistics. He was a Postdoctoral Fellow at the Massachusetts Institute of Technology from September 1992 to December 1993, and Research Scientist at Erasmus University, Rotterdam, The Netherlands, from February 1994 to July 1994. He has been an Associate Professor and Professor from 1994 to 2004 at the École des Mines de Nantes in France. He was an Invited Professor at the Norwegian School of Economics and Business Administration, Bergen, Norway, from March 1999 to July 1999. Since March 2004, he is a Professor at the École des Mines de Saint-Etienne. He is on the Editorial Board of RAIRO-Operations Research. He is the author of one book, and over 25 refereed journal publications. He has coordinated numerous academic and industrial research projects, in particular, in semiconductor manufacturing. His research interests include modeling and optimization of operations at various decision levels (from real-time to strategic) in manufacturing and logistics.

Milind Dawande is a Professor of Operations Management and Area Coordinator of the Operations Management Group, School of Management, University of Texas at Dallas, Richardson. His research interests are in discrete optimization problems in manufacturing and operations. His book, Throughput Optimization in Robotic Cells with N. Geismar, S. Sethi, and C. Srisankdarajah, was published in 2007. He serves as an Associate Editor for a number of journals, including Manufacturing and Service Operations Management, Production and Operations Management, IEEE Transactions, and the Journal of Scheduling.

Prof. Dawande is a member of the Institute for Operations Research and the Management Sciences (INFORMS) and the Productions and Operations Management Society (POMS).
Han Ding (M’97–SM’00) received the Ph.D. degree from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 1989.

Supported by the Alexander von Humboldt Foundation, he was with the University of Stuttgart, Stuttgart, Germany, from 1993 to 1994. He worked at the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, from 1994 to 1996. He has been a Professor at HUST since 1997. He is currently a “Cheung Kong” Chair Professor and Director of the Robotics Institute at Shanghai Jiao Tong University, China. His research interests include robotics, motion control and equipment automation in semiconductor industry.

Dr. Ding was the recipient of the National Distinguished Youth Scientific Fund of China in 1997. He serves as a Guest Editor and a Technical Committee Member of semiconductor manufacturing automation in the IEEE RA Society. He was an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING from 2004 to 2007. He was a CASE Local Chair in 2006. He is the General Co-Chair for ICRA 2011. He has organized and chaired many technical sessions and workshops in various international conferences.

Jeffrey S. Pettinato received the B.S. and M.S. degrees in electrical and computer engineering from George Mason University, Fairfax, VA.

He is a Senior Principal Engineer and the Automation Strategy and Pathfinding Manager at Intel’s Assembly Test Technology Development (ATTD) Division, Chandler, AZ. He is currently responsible for defining the strategic direction for semiconductor assembly-test factory automation and driving research into future technologies across a broad array of areas that include: defect analysis and classification; process control; engineering analysis; factory cycle time optimization; equipment control and data flow optimization; factory scheduling and dispatching; and precompetitive industry standards. He held various technical, strategic, and management positions at Intel for advanced process control (APC), advanced equipment control (AEC), and automated material handling systems (AMHS). Since 2008, he has led the International Electronics Manufacturing Initiative (iNEMI) Roadmap Chapter on Information Management Systems, which is setting future direction on electronics industry factory automation and data exchange. From 2002 to 2006, he was an Intel representative to International SEMATECH Manufacturing Initiative (ISMI) and helped guide industry direction for advanced 300 mm factory capabilities and strategic planning for the next wafer size conversion to 450 mm. From 2000 to 2003, he chaired the International Technology Roadmap for Semiconductors (ITRS) Factory Integration Working Group which defined future semiconductor manufacturing, equipment, facilities, and automation capabilities over a 15 year horizon with 100 partners from industry, academia, and consortia. In 1997, he led the I300I consortia’s Computer Integrated Manufacturing (CIM) Working Group in partnership with Japan’s J300/SELETE consortia to create global factory automation requirements for the 300 mm wafer transition, which resulted in ground breaking open industry standards and capabilities being implemented into virtually every 300 mm process, metrology, and AMHS equipment used today.

Jingang Yi (S’99–M’02–SM’07) received the B.S. degree in electrical engineering from Zhejiang University, Hangzhou, China, in 1993, the M.Eng. degree in precision instruments from Tsinghua University, Beijing, China, in 1996, the M.A. degree in mathematics, and the Ph.D. degree in mechanical engineering from the University of California, Berkeley, in 2001 and 2002, respectively.

He is currently an Assistant Professor of Mechanical Engineering at Rutgers University, Piscataway, NJ. Prior to joining Rutgers in August 2008, he was an Assistant Professor of Mechanical Engineering at San Diego State University since January 2007. From May 2002 to January 2005, he was with Lam Research Corporation, Fremont, CA, as a member of Technical Staff. From January 2005 to December 2006, he was with the Department of Mechanical Engineering, Texas A&M University, as a Visiting Assistant Professor. His research interests include autonomous robotic systems, dynamic systems and control, intelligent sensing and actuation systems, mechatronics, automation science and engineering, with applications to semiconductor manufacturing, civil infrastructural and transportation systems, and biomedical systems.

Dr. Yi is a member of the American Society of Mechanical Engineers (ASME). He is a recipient of the NSF Faculty Early Career Development (CAREER) Award in 2010. He has coauthored papers that have been awarded the Best Student Paper Award Finalist of the 2008 ASME Dynamic Systems and Control Conference, the Best Conference Paper Award Finalists of the 2007 and 2008 IEEE International Conference on Automation Science and Engineering, and the Kayamori Best Paper Award of the 2005 IEEE International Conference on Robotics and Automation. He currently serves as an Associate Editor of the ASME Dynamic Systems and Control Division and the IEEE Robotics and Automation Society Conference Editorial Boards. He also serves as a Guest Editor of IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING.