Design of Port Services with Dramatically Increased Throughput

Mobile Floating Harbor Workshop IV – August 13, 2008

PI: James R. Morrison
Co-PI: Taesik Lee

Researchers: Jong Hoe Kim (MS student)
 Minsung Kim (MS student)
 Kyuhyeon Shin (MS Student)
 Inkyung Sung (MS student)
Presentation Overview

• Existing port services and anticipated challenges

• Traditional methods to improve capacity

• Decoupling port service from the land-sea interface
 • Double sided loading/unloading
 • Mobility
 • Throughput

• Concluding remarks
 • Potential benefits
 • Why floating? Why mobile?
Existing Port Services

- Ships are loaded/unloaded at a berth
 - The interface between land and sea
- Cranes conduct one-sided loading/unloading operations

[1] Incheon harbor and Pusan harbor aerial images courtesy of Google Earth
Container Shipment Market Demands
Dramatic Increase in Port Productivity

- Global container shipment volume continues to (and is expected to) increase
 - About 9% annually since 1990
 - 10-11% in last few years

- Container shipment industry responds: Mega-container ships
 - Allows for economies of scale
 - Requires new capabilities at hub-ports
 - Physical capacity (such as depth, etc.)
 - Productivity
 - Stronger need for trans-shipment capability

Mega–Container Ship: Increasing Dimensions

Implication to Port
- Quay wall: >400m*
- Water depth: >16m*
- Yard Capacity >225,000m² **
- Gate capability, Terminal operation system, Traffic

Crane Capability
- Outreach of crane: >60m
- Height of crane: >50m
- Crane workload: higher # of cranes, higher # of lifts

[1] www.globalsecurity.org,* Numbers are estimated based on 9000TEU ships; ** 김형태, 컨테이너 선의 대형화에 따른 항만의 물리적인 대응전략, 해양한국, 2000
Traditional Methods to Increase Port Service Capacity

- Build more berths
 - Requires existing land, or
 - Create new land (can be difficult)
 - Example: PSA (Singapore) consists of 44 berths and is constructing 13 more by 2009
- Increase depth of existing berths
- Increase existing productivity
 - Faster cranes
 - Lift multiple containers (tandem lift)
- There is a limit to capacity increase

Fundamental Issue: Port service capacity is tightly coupled with the land-sea interface!

A Key Step to Reduce Dependence Upon Land-Sea Interface

- Load/unload with fast cranes (tandem lift where possible)
- Load/unload from both sides of the ship

Features: Double-sided, automation, ship-to-ship

Substantial increase in capacity
- Capacity increase > 150% at the land-sea interface (berth)
Next Step to Minimize Dependence Upon the Land-Sea Interface

- **Goal:** Decouple load/unload from the land-sea interface
 - Want fastest load/unload possible at the land-sea interface
 - Fastest known technology is RORO (roll-on, roll-off)
 - Container ships don’t have RORO capability

- **Constraint:** Ship structure cannot be substantially changed!

- **Question:** How can we satisfy this constraint and still decouple the load/unload from the land-sea interface?
Decouple (un)loading from land-sea interface

Mobile Floating Port (MFP)

- Create a system with ultra-fast (μ) cargo handling interface with land port

Interface to work with existing ship constraints (i.e. conventional crane)

New design for land port - MFP cargo handling interface with ultra-high loading speed
Mobile Floating Port System Can Dramatically Improve Berth Productivity

Ref. Case

Improve crane productivity

Alt. 1

Double-sided loading/unloading

Alt. 2

Mobile Floating Port

T1 ~ \(\frac{1}{2} \) T0

T2 << T1
Embodiment of Mobile Floating Port Concept

[1] Created by KAIST iCAD Lab (Prof. Soonhung Han, Dept. of Ocean System Engineering)
New Port Service Concepts Using MFP

- Can maximize the use of land-based port
- Mobile Floating Harbor is a “mobile” service assets
- Land-side interface can be standardized so that it can serve wide range of ship sizes
So, Why Mobile Floating Port?

- We need a floating port because …
 - Insufficient depth to handle mega-container ships
 - Limited port construction site
 - Reclamation has challenges

- Furthermore, we need it to be *mobile* because …
 - Decouples load/unload from the land-sea interface
 - Can dramatically improve port productivity
 - Allows agile and flexible port service design